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Abstract. Several boundary conditions have been proposed to stabilize the dimerized structures
of finite-length Peierls–Hubbard chains. The effects of different boundary conditions on the
lattice structures and the electronic energy spectra have been analysed. It was found that the
natural or the fixed-end boundary conditions are more suitable to describe polymer chains with
very short lengths than the periodic boundary condition. The competition of electron–electron
interactions with electron–phonon interactions in finite-length chains has also been studied.

1. Introduction

Since the beginning of the 1970s, intense research work has been undertaken in the study of
the physical properties of system of restricted dimensionality. Many chainlike compounds,
such as conjugated polymers and platinum compounds, have been synthesized in which the
electrical conductivity along the chains is much larger than that perpendicular to the chains.
In the treatment of conjugated polymers, if only electron–phonon (e–ph) couplings are
explicitly included, the well known Su–Schriefer–Heeger (SSH) model [1] is obtained, while
if electron–electron (e–e) interactions are also included, then the Peierls–Hubbard [2, 3] and
Pariser–Parr–Pople (PPP) [4, 5] models are widely adopted. These models have achieved
great success in studying the static and dynamical properties of quasi-one-dimensional
conjugated polymers. For example, these models predicted, as has indeed been observed,
a ground state consisting of alternating bonds with an associated Peierls gap of about
1.6 eV. Moreover, because of the reduced dimensionality of the lattice, a variety of nonlinear
excitations could be supported, such as solitons, polarons and bipolarons depending upon
whether the polymer has a degenerate ground state or a nondegenerate ground state [6].

Due to the complex treatment of the SSH, PPP and Peierls–Hubbard Hamiltonians, most
works have been carried out in numerical computation methods in a finite chain or in the
continuous version of the models in an infinite-length chain. In the case of a finite chain,
the periodic boundary condition is generally imposed, while the effect of the ends of the
chain is totally neglected [1–5, 7].

However, some recent research has revealed that the conjugated lengths of polymer
chains may be very short. So the ends of chains may be fatal to some properties of
materials. In actual polymer samples, there are chain breaks and various conjugation
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defects, such as sp3 bonds, cross-links, inclusion of catalyst or precursor polymers, which
act as chain breaks. Fort-PA, analysis of Raman scattering results has provided good
evidence that a sizable proportion of chains has 40 CHs or fewer [8]. Photoluminescence
studies of thermally isomerizedt-PA samples have also led to the conclusion that the
man lengths oft-PA segments are probably less than 26 CHs [9]. Mulazziet al have
indicated that in real materials the polymer chains are always broken by the chain defects
into conjugated fragments of finite lengths. Copolymers with(CH)x sequences have been
prepared in a controlled manner, with expected various lengths ranging from 10 to 100
or more C=C bonds [10]. In these cases, the role of the ends of the short chains should
become apparent. Lanzaniet al has reported typical linear electronic absorption spectra
of samples with different average conjugation length and found that the blue shift of
the absorption maximum occurring on shortening the conjugation length is striking [11].
Study of electroluminescent polymers (LEDs [12] or LECs [13]) also showed that polymers
with short lengths have a wideπ–π∗ energy gap. The photon/electron quantum efficiency
of LEDs can be significantly improved by using short-length conducting polymers as an
electron-injection layer [14].

In this paper, finite-lengtht-PA chains characterized with the Peierls–Hubbard model
were studied. Three kinds of boundary condition wee proposed for the short chains. The
lattice structure and the electronic energy band gap were calculated in each boundary
condition separately. Then the results were compared with the possible experimental data.

2. The SSH model in finite-lengtht-PA chains

Neglecting the electron–electron interactions and the interchain couplings of conjugated
polymers, in the framework of the tight-binding approximation, the SSH model is proposed
[1],

H = −
∑
n,s

[t0− α(un+1− un)](c+n+1,scn,s + c+n,scn+1,s)

+1/2
∑
n

K(un+1− un)2+ 1/2
∑
n

Mu2. (1)

All the notations have the conventional meaning.
For a finite-lengtht-PA chain with open ends, if the ends were allowed to be flexible

and if the SSH Hamiltonian could still be used to describe the open-end chain, then with a
small deviation from the equilibrium configuration, a static condition could be derived by
minimizing the total energy of the system through the second-order perturbation theory,

φn + φn+1 = πλ(−1)n
∑
µ,s

′
Zµ,n,sZµ,n+1,s (2)

whereφn = (−1)n(α/t0)un andλ = 2α2/πKt0 are the dimensionless order parameter and
the e–ph coupling strength. The prime means the sum over the occupied electronic states.
The eigenstateZµ,n,s and the eigenvalueεµ are determined by the following eigenequation,

−(1− δn,1)[1+ (−1)n−1(φn−1+ φn)]Zµ,n−1,s

−(1− δn,N )[1+ (−1)n(φn + φn+1)]Zµ,n+1,s= εµZµ,n,s . (3)

δm,n is the Kronicker delta function.
The iterative equation (2) and (3) can be solved self-consistently. It can be proved

that a uniform dimerized solution cannot be obtained from the equations, which means that
the SSH Hamiltonian is unstable for the dimerized lattice structure of anopen t-PA chain.
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Moreover, it can be proved that, without a suitable boundary condition, from the SSH
Hamiltonian one cannot obtain the stable soliton and polaron in a finite-lengtht-PA chain.
This is apparently inconsistent with the well known experimental observations thatt-PA
has an alternating lattice structure and solitons and polarons are the stable excitations. So
for a finite-length chain, suitable boundary conditions are necessary to obtain the theoretical
results that are consistent with the experimental observation.

3. Boundary conditions of finite chains

In the real materials, each chain is surrounded by the others. The weak interchain couplings
make the conjugated chain a stable structure. So the conjugated polymer can be regarded as
a quasi-one-dimensional system. For a finite-length chain, three kinds of boundary condition
are proposed here.

(1) The periodic boundary condition.The periodic boundary condition has been widely
adopted to describe the finitet-PA chain. It eliminates the end effects.

uN+1 = u1 Zµ,N+1,s = Zµ,1,s . (4)

In this case the static condition is derived as [15]

φn + φn+1 = (−1)nπλ

[∑
µ,s

′
Zµ,n,sZµ,n+1,s − 1

N

N∑
m=1

∑
µ,s

′
Zµ,m+1Zµ,m

]
. (5)

(2) The fixed-end boundary condition.Supposing that the length of the chain keeps
unchanged under the Peierls transition, a fixed-end boundary condition is obtained,

u1 = 0 uN = 0. (6)

Then the static condition is

φn + φn+1 = (−1)nπλ

[∑
µ,s

′
Zµ,n,sZµ,n+1,s − 1

N − 1

N−1∑
m=1

∑
µ,s

′
Zµ,m+1Zµ,m

]
. (7)

(3) The free-end boundary condition.Comparing the fixed-end boundary condition,
another situation is that the chain can expand and contract freely, Su has indicated that, in
this case, an extra constraint must be applied to stabilize the dimerized structure [16, 17],

H ′ =
N−1∑
n

K ′(un+1− un) (8)

whereK ′ can be considered as an effective field caused by the surrounding environment.
In the same way, the static condition is derived (k′ = (−π/4α)K ′),

φn + φn+1 = (−1)nπλ

[∑
µ,s

′
Zµ,n,sZµ,n+1,s − 2

π
k′
]
. (9)

Multiplying by (−1)n on both sides of the above equation, one obtains

k′ = 1

2λ(N − 1)

[
πλ

N−1∑′

µ,m,s

Zµ,m,sZµ,m+1,s −
N−1∑
m

(−1)m(φm + φm+1)

]
. (10)
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4. Comparison of the boundary conditions

The following calculations show that, from all the three boundary conditions (BCs), one
can give stable structures of a finite-length chain. But the dimerization may not be identical
to different boundary conditions. Comparing the static equilibrium equations obtained in
different boundary conditions, one can find that the main difference lies in the second term
of each equation, the stability correction, which is defined asBi(λ,N),

periodic BC:B1(λ,N) = 1

N

N∑′

µ,m,s

Zµ,m,sZµ,m+1,s (11a)

fixed-end BC:B2(λ,N) = 1

N − 1

N−1∑′

µ,m,s

Zµ,m,sZµ,m+1,s (11b)

free-end BC:B3(λ,N) = 1

N − 1

N−1∑′

µ,m,s

Zµ,m,sZµ,m+1,s

− 1

πλ(N − 1)

N−1∑
m

(−1)m(φm + φm+1). (11c)

In the limit N →∞, it can be found,

B1 = B2 = B3 = lim
n→∞

1

N

∑
µ,m,s

′
Zµ,m,sZµ,m+1,s . (12)

The three kinds of boundary condition tend to unanimity. For a uniform dimerized structure
φn = φ0, the eigenstate and the eigenvalue can be obtained analytically. Then

B1 = B2 = B3 = 2

π

∫ π/2

0

cos2 θ√
cos2 θ + 4φ2

0 sin2 θ

dθ (13)

and the relation of dimerized parameterφ0 to the e–ph couplingλ can also be obtained,

1

2π
=
∫ π/2

0

sin2 θ√
cos2 θ + 4φ2

0 sin2 θ

dθ. (14)

For t-PA, T0 = 2.5 eV, α = 4.2 eV Å
−1

, K = 18.7 eV Å
−2

, this givesλ = 0.24. From
(14) is obtainedφ0 = 0.096 oru0 = 0.04 Å, which is consistent with the experimental data
[5]. For the undimerized uniform structure,φ0 = 0, (10) gives outk′ = 1 orK ′ = −4α/π ,
which is the same as what [16] and [17] took. ActuallyK ′ is related to the lattice structure
λ andN of the chains. Figure 1 shows the dependence ofk′ is related to the lattice structure
λ andN of the chains. Figure 1 shows the dependence ofk′ on λ in an infinite t-PA chain
with a dimerized lattice structure. It can be seen thatk′ = 1 is the value at the limit of
weak coupling. With increasing e–ph coupling,k′ decreases.

For a finite-lengtht-PA chain, it was found that for stable structure the ends of the
chain tend to be double bonds. If the chain consists of an even number of CH groups, a
uniformly dimerized structure is obtained, but if the chain consists of an odd number of
CH groups, a kink or a soliton excitation will be formed. Here we focused on at-PA chain
consisting of an even number of CH groups. The dependences ofB, dimerized parameter
〈φ〉 and the electronic energy gap1 on chain lengths are calculated separately for each
boundary condition. The results are shown in figures 2, 3 and 4 separately. It was found
that the final calculated results are identical for the fixed-end and the free-end boundary
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Figure 1. Dependence of the end correctionk′ on the e–ph couplingλ in the free-end boundary
condition.

conditions although the initial physical intentions are different. The reason may be that the
requirement of the lowest energy of the system in our calculation, the extra constraint of
the free-boundary condition, in fact results in fixing of the ends. So onlyB2 is shown in
the figures.

In the case of short chains, it was found that the role of boundary conditions becomes
apparent. With the shortening of the chain, the stability correctionB1 of the periodic
boundary condition decreases, whileB2 of the fixed- or free-end boundary condition
increases. When the chain is longer than 24a, there is no obvious difference between
the periodic boundary and the fixed- (or free-) end boundary condition.

Lanzani et al [11] have used cw photomodulation spectroscopy to probe the effects
of the finite chain lengths on the optical transition. The behaviour has been carefully
checked using absorption spectroscopy in polyenes with a known number of conjugated
bonds up toN = 12 [18]. According to the Kuhn model [19], which introduces a periodic
sinusoidal potential on the electron gas to account for the bond alternation, the transition1

corresponding to the absorption maximum of theπ–π∗ optical transition in polyenes is a
linear function of the inverse chain lengthN

1 = A1+ A2

N
(15)

whereA1 andA2 are the fitting parameters. Various estimates of the parameters have been
given by different groups. As a matter of fact an unambiguous choice ofAi is hampered by
the lack of data for largeN and by the fact that short polyenes with different substitutions
yield different scaling laws withN−1.

In our calculations presented in the periodic boundary conditions, it is found that in the
case of weak e–ph coupling, the transition1 basically fits the inverse law (15), while in
the strong e–ph coupling, the transition keeps unchanged until the chain length decreases
below 10, then a sharp increase appears. The scaling law withN−1 does not hold well.

In the fixed- or free-end boundary condition, our calculations showed that in the whole
e–ph coupling range, the transition1 accords with the scaling law (15) quite well. This
indicates that the fixed- or free-end boundary condition is more suitable for the short
conjugated chains than the periodic boundary condition.

To understand the role of the boundary conditions in more detail, the dimerization
〈φ〉 is calculated in each boundary condition. For an infinite chain, the transition1 is
proportional to the dimerization〈φ〉 [17]. For a finite chain, it was found that, as shown
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Figure 2. Dependence of stability correctionB on chain lengths.λ = 0.1, 0.24 and 0.4 express
the weak, intermediate and strong e–ph coupling separately.

in figure 3, the dimerization〈φ〉 increases with the shortening of the chain in the case of
weak e–ph coupling. However, the increase in the fixed- or free-end boundary condition
is slower than that in the periodic boundary condition. In the intermediate and the strong
e–ph coupling, the dimerization〈φ〉 obtained in the fixed- or free-end boundary condition
keeps basically unchanged, although it still increases with the shortening of the chain in the
periodic boundary condition.

5. The Peierls–Hubbard model in finite-lengtht-PA chains

In the above calculations, the effect of electron–electron (e–e) interactions has been totally
neglected. There is accumulating experimental evidence of the importance of the Coulomb
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Figure 3. Dependence of the average dimerization〈φ〉 on chain lengths.

e–e interactions in polymers. For example, extensive photo-luminescence data [18] indicate
that in polyene the lowest excited state is the dipole-forbidden single state (Ag symmetry)
which lies 0.1–0.6 eV below the lowest dipole-allowed excited state (Bg symmetry) due to
the e–e interactions. It has been pointed out that, based on the Peierls–Hubbard model, the
dimerization disappears for strong e–e interaction, but the e–e interactions have no effect on
the dimerization at the on-site termU/4t0 6 πλ(1+ 2λ) [20]. Kivelson et al reconsidered
this question by adding an important e–e interaction term, the on-bond interaction, to the
Hubbard model. They concluded that e–e interactions always restrain the dimerization [21].
A more detailed study was later presented by Wuet al and Zie et al on the screening
Coulomb potential of e–e interactions [22, 23]. However, all of the calculations were
performed in an infinite or closed ring. The effect of boundary conditions was totally
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Figure 4. Dependence of electronic band gap1 on chain lengths.

neglected. Here we considered the e–e interactions in an open chain,

He−e = U/2
N∑
i,s

ni,sni,−s + V/2
N−2∑
i,s,σ

ni,sni+1,σ +X/2
N−1∑
i,s

(ni,s + ni+1,s)Gi,i+1,−s

+W/2
N−1∑
i,s

Gi,i+1,sGi,i+1,−s (16)

whereni,s = C+i,sCi,s is the charge density operator on sitei andGi,i+1,s = C+i,sCi+1,s +
C+i+1,sCi,s the charge density operator between bondi and i + 1. It includes four e–e
interaction terms: on-site, site–site, site–bond and on-bond. The Hubbard model is recovered
by neglecting the site–bond termX and on-bondW .

(16) was treated in the self-consistent field Hartree–Fock approximation. A group of
parameters(U, V,X,W) = (0.6, 0.3, 0.15, 0.1)t0 [23, 24] was chosen to make the numerical
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Figure 5. Dependence of the dimerization correction〈φ〉e–e − 〈φ〉0 on chain lengths.

calculations. The results are shown in figures 5 and 6 for the dependence of the dimerization
and the band gap on the chain length separately. The dashed lines in the figures are the
results of the Hubbard model(X,W) = (0, 0). It can be seen that the Hubbard model has no
effect on either the dimerization or the band gap for any length of the chain with periodic or
natural boundary conditions. The dimerization and the band gap will change as soon as the
bond-related termsX andW are considered. Our results are consistent with [15] and [16].
But we found some new phenomena. First, as shown in figure 5, e–e interactions decrease
the dimerization when the e–ph coupling is weak, while it will increase the dimerization
when the e–ph coupling is strong. For a given e–e interaction, there exists a transition point
of e–ph coupling (λc). λc = 0.23 was obtained in our calculations. Second, e–e interactions
always decrease the band gap, as shown in figure 6. It is well known that in the Peierls
model both the band gap1 and dimerizationφ will increase with the increasing of the
e–ph couplingλ. When the e–e interactions are considered, it was found that although the
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Figure 6. Dependence of the electronic band gap correction1e−e −10 on chain lengths.

dimerizationφ increases at strong e–ph couplings (for example,λ = 0.4), the band gap1
always decreases. Third, the effect of e–e interactions on band gap becomes more apparent
in a short chain than in a long chain. For example, atλ = 0.24, when the length of the
chain decreases fromN = 20 toN = 8, the difference1e−e − 1 of band gap decreases
from −0.25 to−0.36 eV of the periodic boundary condition and−0.51 eV of the natural
boundary condition. One can observe the same phenomenon in the dimerization whenλ is
larger thanλc.
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